

2M

2M

2M

2M

2M

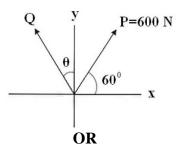
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

I B.Tech I Year I Semester Regular Examinations December 2018 ENGINEERING MECHANICS

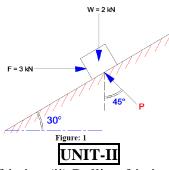
(CE,AGE,ME)

Time: 3 hours

Max. Marks: 60


PART-A

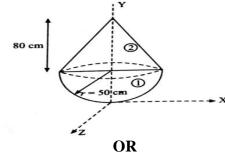
(Answer all the	Questions $5 \times 2 = 10$ Marks)
-----------------	------------------------------------


- **1** a Classify different types of Force Systems.
 - b What is Limiting Friction?
 - c Define Centroid.
 - d Define Parallel Axis Theorem.
 - e Draw Cantilever Truss.

(Answer all Five Units 5 x 10 = 50 Marks) UNIT-I

2 The resultant of two forces P and Q is 1200 N vertical. Determine the force Q and the 10M corresponding angle for the system of forces as shown in Figure.

3 The block shown in Figure 1 is acted upon by its weight W, a horizontal force F, and 10M the pressure P exerted by the inclined plane. The resultant R of these forces is parallel to the inclined plane. Determine P and R. Does the block move up or down the incline?



4 Write short notes on: (i) Cone friction (ii) Rolling friction (iii) Limiting friction 10M (iv) Condition for self locking in a simple screw jack.

OR

5 A solid cylinder of weight 'w' and radius 'r' rolls, down an inclined plane which 10M makes an angle θ with the horizontal axis. Determine the minimum coefficient of friction and the acceleration of the mass center for rolling, without slipping.

6 Determine the centre of gravity of the following figure.

6mm

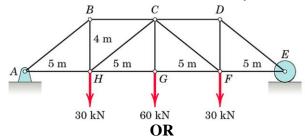
x

UNIT-III

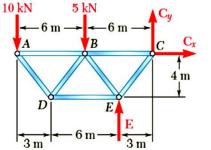
7 Determine the y coordinate of centroid of the shaded area as shown in fig

6mm

⁶nm ⁶nm ⁶nm UNIT-IV


- 8 Explain the terms:
 - i. Moment of inertia
 - ii. Polar moment of inertia
 - iii. Product of inertia.

OR


9 Derive the expression for the moment of inertia of a cylinder length 'l', radius 'r' and 10M density 'w' about longitudinal centroidal axis and about the centroidal transverse axis.

UNIT-V

10 Determine the force in each member of the loaded truss by Method of Joints 10M

11 Determine the force in each member of the loaded truss by Method of sections

END

Page 2 of 2

10M

10M

10M

10M